

Drug Discovery Technologies -A Closer Look

Hugo Kubinyi Weisenheim am Sand

E-mail kubinyi@t-online.de URL www.kubinyi.de

Mastering Medicinal Chemistry RSC, Cambridge, April 27, 2009

Bottlenecks of the Past		
Problem	Solution	
Target search	genome information	
Target validation	knock-outs, RNA silencing	
Lead search	in vitro test models, HTS	
Lead optimization	parallel syntheses,	
	chemogenomics	
Absorption, permeability	Lipinski rules, Caco cells,	
	prodrugs	
Metabolism	liver microsomes	
Toxicity	Ames test, hERG models	
Drug drug interactions	CYP inhibition/induction	

the Search for a Needle in a Haystack

Hugo Kubinyi, www.kubinyi.de		
Is Target Focus the	a)	b)
Best Strategy?	K_{i} 5-HT _{2A} = 4 nM	2.5 nM
H	<i>K</i> _i 5-НТ _{2В} =	12 nM
M Me	K_{i} 5-HT _{2C} = 11 nM	2.5 nM
	K_{i} 5-HT ₃ = 57 nM	
N=	$K_{\rm i}$ dop D ₁ = 31 nM 1	l 19 nM
N-	$K_{i} \operatorname{dop} D_{2} = 11 \operatorname{nM}$	
	$K_{i} \operatorname{dop} D_{4} = 27 \operatorname{nM}$	
	$K_{\rm i}$ musc M ₁ = 1.9 nM	2.5 nM
We	K_{i} musc $M_{2} = 18$ nM	
Olanzapine, a clozapine-like	K_{i} musc $M_{3} = 25$ nM	13 nM
"atypical" neuroleptic with	K_{i} musc $M_{4} = 13$ nM	10 nM
a promiscuous binding pattern	<i>K</i> _i musc M ₅ =	6 nM
a) F. P. Bymaster et al., Neuropsycho- pharmacology 14, 87-96 (1996)	$K_{\rm i} {\rm adr} \alpha_1 = 19 {\rm nM}$	
b) F. P. Bymaster et al., Schizophrenia	$K_{\rm i} {\rm adr} \alpha_2 = 230 {\rm nM}$	
Research <u>37</u> , 107-122 (1999)	K_{i} hist H ₁ = 7 nM	

Tools for Virtual Screening	remaining
Garbage filter	90%
Druglike / Non-druglike	75%
Bioavailability	60%
Cytotoxicity	:
hERG channel inhibiton	:
Antitargets	:
α_{1a} (orthostatic hypotension)	:
D2 (extrapyramidal syndrome)	:
5-HT _{2c} (obesity)	:
musc. M1 (hallucinations, memory)	:
CYP inhibition (3A4, 2C9, 2D6)	:
Pharmacophore searches	:
Docking and scoring	0%?

Hugo Kubinyi, www.kubinyi.de

Problems in Pharmacophore Generation

Isomers, enantiomers, diastereomers

Superposition of flexible molecules

Ionization and dissociation (Sadowski rules)

Tautomeric and protomeric forms (program AGENT, ETH Zurich; ChemoSoft tautomer recognition, ChemDiv)

Acceptor properties of oxygen and sulfur atoms (esters, aromatic ethers, oxazoles, isoxazoles, thiazoles, etc.)

Hugo Kubinyi, www.kubinyi.de

Factors to be Considered in Scoring Functions

Desolvation enthalpy and entropy (ligand and protein) Protonation state of the ligand and the binding site Distortion energy of the ligand and its binding site Loss of translational and rotational degrees of freedom of the ligand MEP + dielectric constant at the binding site Dipole moment of the ligand and local dipole moment at the binding site Binding enthalpy of the ligand-protein complex Repulsive effects (e.g. -O...O-) Inserted water molecules Solvation enthalpy and entropy of the complex

Acute Toxicity of Tetrachlorodibenzodioxin	
	2,3,7,8-Tetrachloro- dibenzodioxin
Species	LD ₅₀ in µg/kg
Mouse	114-280
Rat	22-320
Hamster	1,150-5,000
Guinea Pig	0.5-2.5
Mink	4
Rabbit	115-275
Dog	> 100 < 3,000
Monkey	< 70
Man	??

Hugo Kubinyi, www.kubinyi.de

An Early Clinical Study - Coffee or Tea ?

In late 18th century Gustav III, King of Sweden, performed a "clinical study" to confirm the negative effects of coffee drinking on health. One convicted murder had to drink only coffee, another one tea, instead. Two physicians supervised the study.

First, one physician died. Then the other physician died. Then the king was murdered. The tea drinker died in the age of 83. The coffee drinker survived all others.

Nevertheless, in 1794 coffee drinking was forbidden in Sweden and later again, in 1822.

An early clinical trial, Ann. Int. Med. <u>117</u>, 1, 30 (1992)

Clinical Studies - the Typical Volunteer

Phase I

healthy volunteers, age 18-55 years, males and females (however, no females who could be or could become pregnant), normal weight, no smokers, no alcohol (ab)use, standard food, drug taken with 150 ml water, no other therapy, no intake of fruit juices or illegal drugs.

Voltaire, by J. A. Houdon

The Past

Voltaire (1694-1778):

Doctors pour drugs of which they know little, to cure diseases of which they know less, into human beings of whom they know nothing.

