Chemical Biology and Chemogenomics in Drug Discovery

Hugo Kubinyi
Weisenheim am Sand, Germany

E-Mail kubinyi@t-online.de
HomePage www.kubinyi.de

32nd Annual FEBS Congress
Vienna, Austria, July 07-12, 2007

Classical and Chemical Genetics

<table>
<thead>
<tr>
<th>forward genetics</th>
<th>reverse genetics</th>
<th>forward chemical genetics</th>
<th>reverse chemical genetics</th>
</tr>
</thead>
<tbody>
<tr>
<td>set a random mutation</td>
<td>destroy / silence a certain gene</td>
<td>test library in biological system</td>
<td>test library against a target</td>
</tr>
<tr>
<td>observe new phenotype</td>
<td>observe the phenotype</td>
<td>observe new phenotype</td>
<td>observe the phenotype</td>
</tr>
<tr>
<td>identify the mutated gene</td>
<td></td>
<td>identify the target</td>
<td></td>
</tr>
</tbody>
</table>
Classical and Chemical Genetics

<table>
<thead>
<tr>
<th>forward genetics</th>
<th>reverse genetics</th>
<th>forward chemical genetics</th>
<th>reverse chemical genetics</th>
</tr>
</thead>
<tbody>
<tr>
<td>set a random mutation</td>
<td>destroy / silence a certain gene</td>
<td>test library in biological system</td>
<td>test library against a target</td>
</tr>
<tr>
<td>observe new phenotype</td>
<td>observe the phenotype</td>
<td>observe new phenotype</td>
<td>observe the phenotype</td>
</tr>
<tr>
<td>identify the mutated gene</td>
<td></td>
<td>identify the target</td>
<td></td>
</tr>
<tr>
<td>classical genetics</td>
<td>knock-outs, siRNA models</td>
<td>animal models, chemical biology</td>
<td>in vitro test models, HTS, chemogenomics</td>
</tr>
</tbody>
</table>

Discovery of Monastrol, a Small Molecule Inhibitor of Mitotic Spindle Bipolarity

Control cells (A, B) and Monastrol-treated cells (C, D).

In vitro Differentiation of Embryonic Stem Cells

TWS 119 induces neuron formation from embryonic stem cells by modulation of glycogen synthase kinase 3β (GSK 3β)

Cardiogenol C, from a 100,000-member heterocycles library, induces cardiac muscle cell formation from embryonic stem cells

Differentiation of Pluripotent Progenitor Cells

Purmorphamine, from a 50,000-member heterocycles library, induces osteoblast formation from multipotent mesenchymal progenitor cells; activates the Hedgehog pathway by targeting Smoothened.

X. Wu et al., J.Am. Chem. Soc. **124**, 14520-14521 (2002);

Neuropathiazol, from a 50,000 member heterocycles library, induces neuronal differentiation of adult hippocampal neural progenitor cells.

Revitalization of Aging Cells

from a 20,000 member synthetic library, reversibly reverts aging cells to prolong their lifetime by 25% (about 20 cell divisions)

Compound PTC124 Targets Genetic Disorders Caused by Nonsense Mutations

The Chemical Universe

$10^{40} - 10^{120}$ compounds with C, H, O, N, P, S, F, Cl, Br, I, and MW < 500 ??

Chemogenomics: The Chemical Universe

..... tested against the Target Universe
The Medicinal Chemistry Space

Chemogenomics: Aspartyl Protease Inhibitors
Chemogenomics in Selectivity Optimization

IC_{50} values

<table>
<thead>
<tr>
<th></th>
<th>R = α-H</th>
<th>R = β-H</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEP</td>
<td>n = 1</td>
<td>n = 0</td>
</tr>
<tr>
<td>11.5 nM</td>
<td>2 820 nM</td>
<td>11.5 nM</td>
</tr>
<tr>
<td>ACE</td>
<td>5.5 nM</td>
<td>16 nM</td>
</tr>
</tbody>
</table>

K_i (5-HT$_3$) = 3.7 nM
K_i (5-HT$_4$) > 10,000 nM
K_i (5-HT$_4$) = 13.7 nM

Selectivity of Uptake Inhibitors

SNRI's

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0018</td>
<td>0.0054</td>
</tr>
<tr>
<td>Talopram</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nisoxetine</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SSRI's

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 400</td>
<td>54</td>
</tr>
<tr>
<td>Citalopram</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoxetine</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NA vs. 5-HT transporter IC$_{50}$ ratio (K. Gundertofte et al., in: Computer-Assisted Lead Finding and Optimization, HCA and VCH, 1997; pp. 445-459)
Highly Selective Integrin Receptor Ligands

Lotrafiban (SB 214 857)
- K_i GPIIb/IIIa = 2.5 nM
- K_i $\alpha\nu\beta3$ = 10,340 nM

SB 223 245
- K_i GPIIb/IIIa = 30,000 nM
- K_i $\alpha\nu\beta3$ = 2 nM

Lotrafiban failed in phase III, due to lack of activity and increased mortality (J.-M. Dogné et al., Curr. Med. Chem. 9, 577-589 (2002))

Activities of Benzodiazepines

diazepam (agonist)
- positive intrinsic activity at the GABA$_A$ receptor (tranquilizer)

flumazenil (antagonist)
- no intrinsic activity at the GABA$_A$ receptor (antidote in intoxication)

Ro 15-3505
- (inverse agonist)
- negative intrinsic activity at the GABA$_A$ receptor (proconvulsant)

tifluadom
- (opiate κ agonist, $IC_{50} = 12$ nM)

The Concept of „Privileged Structures“

Different Modes of Action of Chemically Similar Molecules

promethazine (H₁ antagonist)
chlorpromazine (dopamine antagonist)
a, R = CH₃, imipramine
b, R = H, desipramine (uptake blocker)
Many Ligands Bind to Several GPCRs

Olanzapine, a clozapine-like "atypical" neuroleptic with a promiscuous binding pattern

a) F. P. Bymaster et al., Neuropsychopharmacology 14, 87-96 (1996)
Anticholinergics

Antipsychotics, SSRIs, etc.
The SOSA Approach

"The most fruitful basis for the discovery of a new drug is to start with an old drug" Sir James Black, Nobel Prize 1988

\[
\begin{align*}
\text{minaprine (antidepressant)} & \quad K_i \text{ AChE} = 10 \text{ nM} \\
\text{K]i musc M}_1 & = 3 \text{ nM}
\end{align*}
\]

"Selective Optimization of Side Activities"

β-blocker prototype viloxacine antidepressant propafenone 1c antiarrhythmic levocromakalim K channel opener

H. Kubinyi, G. Müller, Chemogenomics in Drug Discovery, Wiley-VCH, 2004
Privileged structures
GPCRs
Ion channels
Kinases
Phosphodiesterases
Binding site similarity
Natural product libraries
etc.,

Wiley-VCH, 2004