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ABSTRACT
The strategies of drug design have changed significantly within the past
few decades. Whereas chemistry, biological activity hypotheses and
animal experiments dominated drug research, especially in its "golden
age", from the sixties to the eighties of the last century, many new
technologies have developed over the past 20 years. A vast amount of
new drugs was expected to result from combinatorial chemistry and
high-throughput screening; however, the yield of new drug candidates
was relatively poor. Molecular modelling, virtual screening and 3D
structure-based design support the selection and rational design of high-
affinity protein ligands. But high affinity to a disease-relevant target is
only one important property; in addition, a drug must be orally
bioavailable, it should have favourable pharmacokinetics and no
unacceptable side effects or toxicity. The following questions are
discussed in detail: what are the reasons for the productivity gap
between R&D costs and the number of NCE's? Is there a "druggable
genome"? Is target focus always best? Is poor ADME the main problem
in clinical development? Are we using the right virtual screening tools?
What are the main problems in virtual screening and structure-based
design? What is wrong and what could we do better? 

INTRODUCTION

The strategies of drug research did not change much from the late 19th century until the

seventies of the 20th century. New compounds were synthesized and tested on animals or organ

preparations, following some chemical or biological hypotheses. Although synthetic output was

relatively low, the real bottlenecks were the biological test models. Pharmacological

experiments using dozens of animals for every new compound often needed more time for

biological characterization than for chemical synthesis. 
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This situation started to change about 30 years ago. Slowly rational approaches developed, such

as QSAR and molecular modelling. The consequence was a lower output in such projects, when

certain chemical structures that were proposed by these methods had to be synthesized. On the

other hand, in vitro test systems such as enzyme inhibition or the displacement of radio-labelled

ligands in membrane preparations enabled much faster investigation of new analogues. Now

chemistry was the bottleneck. About 10 to 15 years ago, another significant shift in drug

discovery paradigms occurred: combinatorial chemistry suddenly flooded the biology

laboratories with an overwhelming number of new compounds. It has been commented that

combinatorial chemistry was the "revenge of the chemists" to the development of fast in vitro

test models, with their large output of data within a relatively short time. However, biologists

were able to compete: tens of thousands of compounds, later even more, could be investigated

by automated high-throughput screening (HTS) systems in just one week. 

In the past, wrong or misleading results were obtained too often just because of the use of animal

models. Gene technology made an important contribution to drug discovery: the opportunity to

produce almost any protein in sufficient quantities enabled biologists to test new compounds at

human targets. Genetically modified animals indicate whether a certain principle could work in

therapy. The action of an enzyme inhibitor can be simulated before any compounds are

synthesized and tested, by a knockout of the corresponding enzyme; the action of drugs can be

investigated in animals bearing a human protein. In addition, the production of larger quantities

of a protein of therapeutic relevance allows the determination of its three-dimensional (3D)

structure at atomic resolution by protein crystallography, alternatively by multidimensional

NMR methods. As a consequence, methods developed for the structure-based design of ligands,

by modelling or experimental determination of the 3D structures of protein-ligand complexes.

Unfortunately, a new bottleneck resulted! Early combinatorial chemistry was guided by

synthetic accessibility and the hype for large numbers. Due to this wrong focus, a huge amount

of greasy, high-molecular weight compounds resulted, with all their problems in bioavailability

and pharmacokinetics. Biological testing which did not produce any valuable hits or supposed

hits, later failed in preclinical or clinical development. Whereas this situation has fortunately

changed in recent years, due to the maturation of combinatorial chemistry to an automated

parallel synthesis of designed libraries, there was still a need for the fast measurement or

prediction of ADME (absorption, distribution, metabolism, excretion) properties. Indeed,

ADME became the new bottleneck.

http://www.beilstein-institut.de/bozen2002/proceedings/contents/contents.pdf
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Nowadays, we have information on the sequence of the human genome; our combinatorial

chemistry approaches are under control by medicinal chemists and biologists; in addition to

structure-based design we apply computer-aided methods for data mining, virtual screening,

docking and scoring, to predict valuable leads and optimized candidates; HTS models have

developed to ultra-HTS models, with up to a million test points per 24 hours; we even have fast

experimental models and prediction tools for some ADME parameters. Is there a new

bottleneck? Yes, unfortunately, or better to say: yes, of course. Target validation, the proof that

the modulation of a certain target by a small molecule will indeed work in therapy, is one of the

new bottlenecks. The other one, even more problematic, is the fact that only for some targets

can small molecules be discovered which modulate the protein or a certain protein-protein

interaction in the desired manner; "druggable" defines the property of a certain target to be

accessible by small molecule intervention.

In the past, serendipity played a big role in the discovery of new drugs [1-3]. Some other

projects confirmed that the search for new drugs may be more efficient by establishing

biological or structure-activity hypotheses and/or selecting certain scaffolds and substituents in

the design of new drug candidates. The ratio of 10,000 compounds to produce one new drug is

still very often cited. This applies to the situation where research starts from an endogenous

ligand or any other lead structure. The "irrational approach", to test huge numbers of in-house

compounds, commercially available compounds or chemistry-driven combinatorial libraries in

HTS, did not deliver the expected amount [4]. Hundreds of thousands to millions of compounds

have to be investigated if such a search starts from scratch, without any knowledge of an active

lead, and even then there is no guarantee of success.

THE "DRUGGABLE GENOME"

The human genome project has provided information on all our genes. However, the situation

is the same as the one with Egyptian hieroglyphs before the discovery of the Rosetta Stone. We

read the text but we understand only a minor part. There are about 30,000 genes in the human

genome but we do not know how many of them are disease-related and how many of the gene

products will be druggable. It has been estimated that about 600 to 1500 druggable, disease-

related targets exist, if one assumes about 10% of disease-related genes on the one hand and

about 10% druggable gene products on the other hand [5]. However, this number has to be

questioned because only the number of genes was considered [6]. 

http://www.beilstein-institut.de/bozen2002/proceedings/Goldstein/Goldstein.pdf
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First of all, many proteins or protein variants (estimated to be in the range of some 100,000s)

are produced by alternative splicing and/or post-translational modification than there are genes

in the genome. Second, proteins can form a multitude of heteromeric complexes that are made

up from only a small number of different proteins, e.g. GABA and nicotinic acetylcholine

(nACh) receptors, integrins and heterodimeric G protein-coupled receptors (GPCR). Third,

some proteins are involved in more than one signalling chain, interacting with different proteins

to modulate certain effects. And, last but not least, many therapeutically used drugs do not

interact with just one target but have a balanced effect on several different targets. A striking

example for such a promiscuous drug is the atypical neuroleptic olanzapine, which interacts as

a nanomolar ligand with many different GPCRs [7-9].

Thus, we should neither discuss a druggable genome, nor a druggable proteome, nor a

"druggable targetome", but a "druggable physiome" [6]. Our problem is that we do not yet know

how to define and design a drug with the right balance of different target affinities, e.g. for

depression, schizophrenia and other CNS diseases.

VIRTUAL SCREENING

Several new strategies have been developed for the structure-based and computer-aided design

of active compounds. Drug research has often been compared with the search for a needle in a

haystack. If neither active leads nor the 3D structure of the biological target are known, HTS

seems to be the only reasonable approach. But much useful information can be derived from

virtual screening [10], which reduces the size of the haystack. First of all, reactive compounds

and other compounds with undesirable groups can be eliminated by so-called "garbage filters"

[11]. In a next step, the Lipinski (Pfizer) rule of five may be applied to estimate the potential for

oral bioavailability; this set of four rules demands that the molecular weight of a molecule

should be lower than 500; the lipophilicity, expressed by log P (P = calculated octanol/water

partition coefficient), should be smaller than 5; the number of hydrogen bond donors should not

be larger than 5; the sum of oxygen and nitrogen atoms in the molecule (as a rough

approximation of the number of hydrogen bond acceptors) should not exceed 10 [12]. A high

risk of insufficient oral bioavailability is assumed if more than one of these conditions is

violated. Often the rule of five-compatible molecules is erroneously called "drug-like" [6].

However, most of the compounds of the ACD (Available Compounds Directory) [13] would get

this label if only the Lipinski rules are applied. "Drug-like" or "non-drug-like" character can

http://www.beilstein-institut.de/bozen2002/proceedings/contents/contents.pdf
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only be attributed by neural nets that have been trained with drugs and chemicals [14-16]. In

this context it is important to notice that filters are valuable and efficient in the enrichment of

interesting candidates out of large libraries. Single compounds should not be evaluated by such

filters because the relatively large error rate of about 20% false positives and 20% false

negatives would too often provide misleading results. 

The situation in drug discovery is much better if a certain number of active and inactive ligands

of a target are already known. If a chemical series belongs to a common scaffold or to some

related scaffolds, 2D or 3D similarity methods, QSAR and 3D QSAR approaches, and

pharmacophore approaches can be applied to derive structure-activity hypotheses (some of the

problems of pharmacophore generation will be discussed in the next section). The results of

such analyses are proposals for new syntheses or selections of compounds from a library. A

highly valuable tool in this respect is feature tree similarity comparisons [17,18], where the

molecules are coded as strings with nodes, to which the pharmacophoric properties of the

corresponding functional group, ring or linker are attributed. Due to this simple representation

of the molecules, similarity searches can be performed extremely fast. In this manner, screening

hits can be compared in their similarity to a whole in-house compound library, to libraries of

commercially available compounds, e.g. the MDL Screening Compounds Directory [19], and

to even larger virtual libraries. 

If the 3D structure of a new target is known from experimental determination or from reliable

homology modelling, the situation seems to be better but in reality it is not. There remains a high

degree of uncertainty about the 3D structure of the protein in the bound state if no information

on protein-ligand complex 3D structures is available. Relatively often, the protein itself and its

ligand complexes have significantly different 3D structures, the most prominent example being

HIV protease. In addition, the relatively low resolution of most protein 3D structures does not

allow one to differentiate between the side chain rotamers of asparagine, glutamine, threonine

and histidine; the protonation state of histidine remains unclear; water molecules, which are

important for the binding of a ligand, are sometimes neglected in protein 3D structures. 

All these problems exist only to a minor extent if several protein-ligand complexes can be

inspected, which leads to the fourth and best situation in ligand design: not only the protein but

also some protein-ligand complexes are known. Molecular modelling and docking aids in the

design of new ligands with hopefully improved binding affinity and/or selectivity with respect

to other targets. 

http://www.beilstein-institut.de/bozen2002/proceedings/Goldstein/Goldstein.pdf
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It should be emphasized that structure-based design can result in a high-affinity ligand but

affinity is only a necessary property of a drug, not a sufficient one. In addition, a drug has to be

bioavailable, it must have a proper biological half-life time and it must not be toxic, among other

important properties.

PHARMACOPHORES

The definition of a pharmacophore is simple [20]. A 3D pharmacophore corresponds to an

arrangement of hydrogen bond donor and acceptor, lipophilic and aromatic groups in space, in

such a manner that these moieties can interact with a binding site at the target protein; in

addition, steric exclusion volumes can be defined. However, the identification of a

pharmacophore within a congeneric group of compounds is far from being trivial. Although

there are computer programs for the automated derivation of pharmacophores from series of

active and less active analogues [21], a better and more reliable method seems to be a

"construction by hand" [22]. Four independent problems have to be considered:

• the different pharmacophoric properties of oxygen atoms, 

• the protonation and deprotonation of ionizable groups,

• the consideration of tautomeric forms, and

• the superposition of flexible molecules.

Oxygen atoms are strong hydrogen bond acceptors, as long as they are either connected to a

carbon atom by a double bond (e.g. in aldehydes, ketones, carboxylic acids, carbonyl group of

esters) or substituted by hydrogen and/or aliphatic residues (water, aliphatic alcohols and

aliphatic ethers). They are weak or even not acceptors at all (e.g. the sp3 oxygen atom of an ester

group) if their directly neighbouring atoms are connected to another atom by a double bond or

if they are part of an aromatic system, as in oxazoles and isoxazoles (Fig. 1) [23,24].

http://www.beilstein-institut.de/bozen2002/proceedings/contents/contents.pdf
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Figure 1. The oxygen atoms of alcohols, aliphatic ethers, aldehydes, ketones, carboxylates and amides are strong
hydrogen bond acceptors. The oxygen atoms of mixed aliphatic-aromatic ethers are weaker acceptors and the
oxygen atoms of aromatic ethers and heterocycles are more or less without acceptor properties. The same applies
to the sp3 atom of an ester group, because of the electron-withdrawing effect of the carbonyl group, which itself is
a strong hydrogen bond acceptor, and to oxygen in aromatic systems.

Ionizable groups must be recognized and defined in the right manner to end up with correct

pharmacophores. As this is still a mainly unsolved problem for many compounds that are not

simple acids, phenols or anilines (at least considering the speed that is needed in the virtual

screening of large libraries), a rule-based system has recently been proposed [25]. In this set of

rules, all carboxylic acids, the strongly basic amidines and guanidines, and quaternary

ammonium compounds are permanently charged. Neutral and protonated forms are generated

and investigated in parallel for amines, imidazoles, pyridines and other nitrogen-containing

heterocycles. For tetrazoles, thiols, hydroxamic acids, and activated sulfonamides, neutral and

deprotonated forms should be investigated in parallel. Certain rules restrict the number of

generated species, to avoid combinatorial explosions: there are definitions of the maximum

number of charges in a molecule and no identical charges are allowed in adjacent positions of

the molecule. Although this approach is definitely better than using all molecules in their neutral

form, refined prediction models are urgently needed. An even more difficult problem arises

from the fact that ionizable amino acid side chains in proteins may significantly change their

pKa value in dependence of their environment [26,27]. 

Protomers and tautomers constitute another serious problem in virtual screening and docking

(Fig. 2) [28,29]. 1,3-Diketones, acetoacetic esters, hydroxypyridines, oxygen-substituted

pyrimidines and purines, and many other compounds may exist in several tautomeric forms that

have to be recognized and considered. 

http://www.beilstein-institut.de/bozen2002/proceedings/Goldstein/Goldstein.pdf
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Figure 2. The two different protomers of imidazole (upper left) present their donor and acceptor moieties in
different positions; as imidazole has a pKa value around 7, also the charged form with two donor functions has to
be considered (upper right). The other compounds are typical examples of tautomeric forms of molecules, where
donor and acceptor functions change their position.

For the purine base guanine, 15 different tautomers can be formulated [29]. In this context it is

interesting to note that for a long time Watson and Crick had problems in deriving the correct

3D structure of DNA because they only considered the enol tautomers of guanine and thymine,

instead of the keto forms (Fig. 3). When their colleague Donohue corrected this error, they

immediately arrived at the correct base pairing [30]. Sometimes enol forms of a ligand are

induced by the binding site, as is the case for the binding of the barbiturate Ro 200-1770 to a

matrix metalloprotease (Fig. 3) [31]. Computer programs for the generation of all possible

tautomers have been described [29,32].

If all these topics are considered in an appropriate manner, the next step is an alignment of the

molecules. With rigid molecules, this is most often no problem. But even with steroids the

question arises, whether a 3-keto-17-hydroxy-steroid and a 3-hydroxy-17-keto-steroid should

be aligned according to their molecular skeleton (which puts the hydrogen bond donor groups

of both molecules far apart) or whether a head-to-tail superposition is more favourable; the

steric superposition is about as good in this latter case as in the conventional superposition [33].

For flexible molecules, the most rigid active species should be used as a template onto which,

step by step, the other molecules are superimposed. 

http://www.beilstein-institut.de/bozen2002/proceedings/contents/contents.pdf
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This can be done by visual inspection or by field fit methods, such as SEAL [34,35]; most often

several different conformations have to be considered. FlexS is a computer program for flexible

superposition; one molecule is used as a rigid template and all other molecules are

superimposed in a flexible manner onto this template [36,37]. 3D QSAR methods, such as

CoMFA (comparative molecular field analysis) [38,39] or CoMSIA (comparative molecular

similarity index analysis) [40], surprisingly do not depend on knowledge of the bioactive

conformation. If all conformations are "wrong" to the same extent, the result of an analysis may

nevertheless be useful. Another difficulty in the alignment of molecules arises from different

binding modes of seemingly similar molecules; there are no general rules on how to recognize

such situations.

Figure 3. The guanine tautomer shown in the upper left is the predominant one of 15 possible tautomers, whereas
Watson and Crick, worked for a long time, with the tautomer shown in the lower left. Ro 200-1770 is a matrix
metalloprotease inhibitor. Only one tautomer can bind with high affinity; the carbonyl form or the other enol form
will not form favourable hydrogen bond networks.

Once a pharmacophore hypothesis has been derived, 3D searches can be performed, using

commercial software [21,41]. However, it must be emphasized that 3D searches are only

meaningful if all the structures of a database are defined according to their correct

pharmacophoric properties; otherwise such searches are just useless.

http://www.beilstein-institut.de/bozen2002/proceedings/Goldstein/Goldstein.pdf
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STRUCTURE-BASED LIGAND DESIGN

In the 1970s, the first structure-based design of ligands was performed. The 3D structure of the

2,3-diphosphoglycerate (2,3-DPG) haemoglobin complex was used to derive simple aromatic

dialdehydes which mimicked the function of 2,3-DPG as an allosteric effector molecule.

Another early example was the structure-based design of trimethoprim analogues with

significantly improved affinities to dihydrofolate reductase. However, neither the haemoglobin

ligands nor the trimethoprim analogues could be optimized to become drugs for human therapy

[42,43]. The first real success story was the structure-based design of the antihypertensive drug

captopril, an angiotensin-converting enzyme (ACE) inhibitor. The structure of captopril was

derived in a rational manner from a binding site model, using the 3D information of an inhibitor

complex of the closely related zinc protease carboxypeptidase A [44]. 

With the ongoing progress in protein crystallography and multidimensional NMR techniques,

the 3D structures of many important proteins, especially enzymes, have been determined. This

information led to the structure-based design of several therapeutically useful enzyme

inhibitors, most of which are still in preclinical or clinical development. Marketed drugs that

have resulted from structure-based design are e.g. the antiglaucoma drug dorzolamide (Merck)

and the newer HIV protease inhibitors nelfinavir (Agouron Pharmaceuticals, now Pfizer) and

amprenavir (Vertex Pharmaceuticals; developed and marketed by GSK).

Neuraminidase is an interesting target for the structure-based design of anti-influenza drugs. In

a very elegant study, Mark von Itzstein used the computer program GRID to estimate interaction

energies of the neuraminic acid binding site of this enzyme with different probe atoms or small

groups [45]. He realized that the introduction of basic groups, like -NH2, -C(=NH)NH2 or -NH-

C(=NH)NH2, into the relatively weak inhibitor neu5ac2en should significantly improve

inhibitory activities. This is indeed the case: the neuraminidase inhibitor zanamivir is about 4

orders of magnitude more active than its 4-hydroxy-analogue neu5ac2en. Due to its polar

character, zanamivir (Relenza®, GSK) is orally inactive; it must be applied by inhalation [46]. 

Scientists at Gilead Sciences started from the observation that the glycerol side chain of certain

zanamivir analogues does not contribute to affinity. In a series of carbocyclic analogues,

strongest inhibitor activity was observed for a pent-3-yl ether. Its ethyl ester prodrug oseltamivir

(GS 4104, Tamiflu®, Hoffmann-La Roche; Fig. 4) shows good oral bioavailability [46,47].

Several other success stories of structure-based design have been published [43,48-51].

http://www.beilstein-institut.de/bozen2002/proceedings/contents/contents.pdf
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Figure 4. Schematic presentation of the binding mode of the 4-desoxy-4-guanidino-analogue of neu5ac2en,
zanamivir, to neuraminidase (left); chemical structure of the orally available prodrug oseltamivir (right).

COMPUTER-AIDED LIGAND DESIGN

Whereas structure-based design can be regarded as the predominant strategy of the last two

decades, several computer-assisted methods have been developed more recently. If thousands

of candidates and even larger structural databases are to be tested for their suitability to be

ligands of a certain binding site, this can no longer be performed by visual inspection. The

design process has to be automated with the help of the computer.

The very first computer-based approaches, to search for ligands of a certain binding site, were

the programs DOCK [52] and GROW. The de novo design program LUDI, developed by Hans-

Joachim Böhm at BASF in the early 1990s, was a significant improvement over these early

prototypes [53,54]. After the definition of a binding site region by the user, the program

automatically identifies all the hydrogen bond donor and acceptor sites, as well as aliphatic and

aromatic hydrophobic areas of this part of the protein surface. From the program-implemented

information on the geometry of the interaction of such groups with a ligand, the program creates

vectors and regions in space, where the complementary groups of a ligand should be located. In

the next step, LUDI searches any database of 3D structures of small and medium-sized

molecules for potential ligands. Every candidate is tested in a multitude of different orientations

and interaction modes, optionally also in different conformations. After a rough evaluation, by

counting the number of favourable interactions and by checking for unfavourable van der Waals

overlap between the ligand and the protein, the remaining candidates are prioritized by a simple

but efficient scoring function [55]. 

http://www.beilstein-institut.de/bozen2002/proceedings/Goldstein/Goldstein.pdf
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This scoring function estimates interaction energies on the basis of charged and neutral

hydrogen bonding energies, hydrophobic contact areas, and the number of rotatable bonds of

the ligand. In a last step, the program is able to attach groups, fragments and/or rings to a hit or

to an already existing lead structure. The flexible docking of ligands onto a rigid binding site

can be achieved by the programs DOCK 4.0 [56], GOLD [57], FlexX [58,59], and the public

domain program AutoDock [60,61], to mention those which are the most prominent; more

docking programs and several success stories of computer-assisted drug design have been

reviewed by Schneider and Böhm [62]. The FlexX modifications FlexE [63] and Flex-Pharm

[64] allow a flexible ligand docking into an ensemble of different binding site conformations

and the definition of pharmacophore constraints, respectively. Of course, the pharmacophoric

properties of all molecules must also be defined in a correct manner in structure-based and

computer-aided design.

FRAGMENT-BASED AND COMBINATORIAL LIGAND DESIGN

Several other methods for the design of new ligands have been described in the past, e.g. needle

screening [65,66], which starts from a collection of small drug-like ligands and attempts to

extend the best ones to larger ligands. In the binding of biotin to avidin, some molecular

fragments have only micromolar affinities, whereas biotin itself binds with femtomolar affinity

[67]. This principle has recently been used in the rational design of a nanomolar enzyme

inhibitor from two low-affinity natural products which bind to different sites of the protein [68].

The SAR by NMR method [69-71] searches for small, low-affinity ligands of proteins which

bind to adjacent areas of the binding site. A linker combines both molecules to a nanomolar

ligand. Some other NMR-based techniques for ligand discovery have been developed [72-78].

Fragment-based ligand design has been applied for combinatorial techniques [79]. Up to 10,000

low-molecular weight ligands can be tagged onto a gold-coated glass surface [80]; binding of

any protein to these microarrays of immobilized ligands is detected by surface plasmon

resonance, in this manner avoiding the development of a specific screening method for a new

protein. The dynamic assembly of ligands [81-84] generates new molecules from fragments

which reversibly react with each other in the presence of a protein. 

http://www.beilstein-institut.de/bozen2002/proceedings/contents/contents.pdf
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Molecules that fit the binding site are preferentially formed and afterwards trapped by a reaction

which freezes the equilibrium. Some other approaches for the combinatorial design of new leads

have been described [85-89].

There are also several computer-assisted techniques for the combinatorial combination of

fragments to new leads. The program CombiGen [90] designs libraries with a high percentage

of drug-like compounds by assembling privileged and/or user-defined fragments and optionally

modifying the resulting structures; virtual screening procedures eliminate molecules with

undesired properties. TOPAS [91,92] dissects lead structures into fragments and assembles new

molecules by re-combining a chemically similar scaffold with fragments that are similar to the

originals; cleavage and assembly of the molecules follow chemical reactions that are defined by

a RECAP-like procedure [93]. In this manner, new chemistry is generated by "scaffold

hopping" [94]. In principle, the docking program FlexX [58,59], which performs an incremental

construction of a ligand within the binding site, could also arrive at new analogues, if many

different building blocks are used instead of the original building blocks; no virtual library of

millions of potential candidates needs to be constructed, only favourable intermediate solutions

and final candidates are generated. The only unsolved problem in this respect is the lack of

reliability of the scoring functions [95].

SUMMARY AND CONCLUSIONS

Virtual screening and fragment-based approaches are powerful techniques in the search for new

ligands [10,62,96]; promising candidates can be enriched in compound collections and virtual

libraries. The integration of protein crystallography, NMR techniques, and virtual screening

will "significantly enhance the pace of the discovery process and the quality of compounds

selected for further development" [97]. 

The similarity principle, that similar compounds should exert similar biological activities, has

always been a most successful approach in drug research, despite many exceptions to this

general concept [98,99]. Chemogenomics is a new term for the dedicated investigation of

certain compound classes in target families, such as the G protein-coupled receptors (GPCR),

kinases, phosphodiesterases, serine proteases, ion channels, etc. [100-104]. 

http://www.beilstein-institut.de/bozen2002/proceedings/Goldstein/Goldstein.pdf
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An analogous concept, the "selective optimization of side activities" (SOSA approach),

attempts to develop new drugs in the direction of a side-effect of a certain drug [105,106].

Historical examples for the validity of this approach are e.g. antitussive and constipating

morphine analogues, diuretic and antidiabetic sulfonamides, and many others [107]; some very

recent examples have been reviewed [106,107].

As already mentioned, good ligands are not necessarily good drugs. High-throughput screening

of in-house libraries, which originally contained large numbers of reactive, degraded, coloured,

fluorescent, and highly lipophilic molecules, and screening of combinatorial libraries of large,

lipophilic molecules produced hits that could not be optimized to drug candidates. Awareness

of the real problems came only after Lipinski had defined his set of rules [12]. On the other hand,

the massive increase of screening failures due to such inappropriate compound collections or

libraries turned this awareness of ADME problems into a hype. Prior statistics of 40% failure in

clinical investigation (the most expensive phase of drug development), due to ADME problems

[108,109] are cited in the literature, again and again; a closer inspection of the data shows that

the ADME-related failure can be neglected if anti-infectives are removed from the original

sample [6,109]. This is an indication that medicinal chemists have always considered, the

importance of ADME properties. Only HTS and early combinatorial chemistry have generated

so many problems in this direction. In addition to the Lipinski rules, several in vitro and in silico

techniques are now available for the estimation of ADME properties [110].

With respect to biological testing, Horrobin has raised the question as to whether we are already

living in Castalia, the famous virtual land of Hermann Hesse's novel "The Glass Bead Game",

where the masters organize and play the most sophisticated, complex and brilliant games -

without any context to reality [111]. Sometimes, this is also the case in modelling and drug

design [6]. The new tools of drug research are extremely powerful but they will be successful

only if the most important factors, some of which have been reviewed here, are considered in

the right manner. In the fascinating search for better and safer drugs, the new paradigms of drug

discovery have to merge with traditional medicinal chemistry experience [2,112,113]. 
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