Hugo Kubinyi www.kubinyi.de

Chemical Biology and Chemogenomics in Drug Discovery

Hugo Kubinyi

Weisenheim am Sand, Germany

E-Mail kubinyi@t-online.de HomePage www.kubinyi.de

32nd Annual FEBS Congress Vienna, Austria, July 07-12, 2007

forward genetics	reverse genetics	forward chemical genetics	reverse chemical genetics
set a random mutation	destroy / silence a certain gene	test library in biological system	test library against a target
observe new phenotype identify the nutated gene	observe the phenotype	observe new phenotype identify the target	observe the phenotype

CI	assical and Ch	emical Genetic	S
forward genetics	reverse genetics	forward chemical genetics	reverse chemical genetics
set a random mutation	destroy / silence a certain gene	test library in biological system	test library against a target
observe new phenotype	observe the phenotype	observe new phenotype	observe the
mutated gene		target	phenotype
classical genetics	knock-outs, siRNA models	animal models, chemical biology	<i>in vitro</i> test models, HTS, chemogenomics

Hugo Kubinyi www.kubinyi.de	
Many Ligands Bind	a) b)
to Several GPCRs	$K_{\rm i} 5 - {\rm HT}_{2{\rm A}} = 4 {\rm nM} 2.5 {\rm nM}$
A H s	$K_{\rm i}$ 5-HT _{2B} = 12 nM
∕ N Y S ≻ Me	$K_{\rm i} \text{5-HT}_{2C} = 11 \text{nM} 2.5 \text{nM}$
	K_{i} 5-HT ₃ = 57 nM
N=<	K_i dop D ₁ = 31 nM 119 nM
N-	$K_i \operatorname{dop} D_2 = 11 \operatorname{nM}$
	$K_{i} \operatorname{dop} D_{4} = 27 \operatorname{nM}$
	$K_{\rm i} {\rm musc} {\rm M}_{\rm 1} = 1.9 {\rm nM} 2.5 {\rm nM}$
WIE	K_{i} musc M ₂ = 18 nM 18 nM
Olanzapine, a clozapine-like	K_{i} musc M ₃ = 25 nM 13 nM
"atypical" neuroleptic with	K_{i} musc M ₄ = 13 nM 10 nM
a promisedous binding patient	$K_{\rm i}$ musc M ₅ = 6 nM
a) F. P. Bymaster et al., Neuropsycho- pharmacology 14, 87-96 (1996)	$K_i \operatorname{adr} \alpha_1 = 19 \operatorname{nM} 19 \operatorname{nM}$
b) F. P. Bymaster et al., Schizophrenia	$K_{i} \operatorname{adr} \alpha_{2} = 230 \operatorname{nM}$
Research <u>37</u> , 107-122 (1999)	K_{i} hist H ₁ = 7 nM 7 nM

